/ e
\ (L 5&4&5&%

4 ,
_«::“au«
.

Inside the

Apple //e

Gary B. Little

Brady Communications Company, Inc.
A Prentice-Hall Publishing Company

Bowie, MD 20715

Inside the Apple //e

Copyright © 1985 by Brady Communications Company, Inc.

All rights reserved. No part of this publication may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or by any information storage and retrieval
system, without permission in writing from the publisher. For information,
address Brady Communications Company, Inc., Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Little, Gary B., 1954—
Inside the Apple Ile.

Title appears on t.p. as: Inside the Apple //e.

Includes bibliographies and index.

1. Apple Ile (Computer) I. Title.
QA76.8A66231L.38 1984 001.64 84-12461

ISBN 0-89303-551-3

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

85 86 87 88 89 90 91 92 93 94 95 345678910

Publishing Director: David Culverwell

Acquisitions Editor: Chris Williams

Production Editor/Text Designer: Michael J. Rogers
Art Director: Don Sellers

Assistant Art Director: Bernard Vervin

Cover Design: George Dodson

Manufacturing Director: John A. Komsa

Copy Editor: Keith R. Tidman

Photo of protoboard and DIP jumper cable: Tony Szary

Typesetting: Electronic Publishing Services, Baltimore, MD

Printing: Fairfield Graphics, Fairfield, PA

Typefaces: Eurostile (display), Aster (text), and Universal Monotype #3 H-P (computer programs)

To my grandfather,
Richard V. Robinson (1899-1978)

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts
in preparing this book and programs contained in it. These efforts
include the development, research, and testing of the programs to
determine their effectiveness. The author and the publisher make
no warranty of any kind, expressed or implied, with regard to these
programs, the text, or the documentation contained in this book.
The author and the publisher shall not be liable in any event for
claims of incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of the text or
the programs. The programs contained in this book are intended
for the use of the original purchaser.

Trademarks of Material Mentioned in This Text

Apple //e, Applesoft, Apple II, Apple II Plus, Apple //c, Apple I,
Integer BASIC, DOS 3.3, Lisa, Macintosh, and ProDOS are trade-
marks of Apple Computer, Inc.

Note to Authors

Do you have a manuscript or software program related to per-
sonal computers? Do you have an idea for developing such a proj-
ect? If so, we would like to hear from you. The Brady Company
produces a complete range of books and applications software for
the personal computer market. We invite you to write to David
Culverwell, Publishing Director, Brady Communications Com-
pany, Inc., Bowie, MD 20715.

CONTENTS

Preface / xiii

1 Introduction to Apple and the Apple //e / 1
A Condensed History of Apple Computer, Inc. / 1
1976 / 2
1977 / 3
1978 / 4
1979 / 4
1980-1982 / B
1983 / 6
1984 / 7
Under the Hood of the Apple /e / 7
Learning the Fundamentals / 8
Numbering Systems / 8
Bit Numbering and “Significance” / 9
Pointers and Vectors / 10
Control Characters / 11
6502 Assembly Language / 11
Running Assembly-Language Programs / 13
What Won't Be Covered / 14
Using the Optional Diskette / 14
Further Reading for Chapter 1 / 15

2 The 6502 Microprocessor / 17
Important 6502 Concepts / 17
Zero Page and the Stack / 18
6502 Instruction Set / 19
6502 Registers / 21
The Accumulator—A / 26
The Index Registers—X and Y / 27
The Processor Status Register—P / 28
Carry Flag (C) / 29
Zero Flag (Z) / 30
Interrupt Disable Flag (I) / 30
Decimal Mode Flag (D) / 30
Break Flag (B) / 31
Overflow Flag (V) / 31
Negative Flag (N) / 31
The Stack Pointer—S / 32
The Program Counter—PC / 33
6502 Addressing Modes / 33
Immediate / 34
Absolute / 35

vi [Inside the Apple //e

Accumulator / 36
Implied / 36
Indexed Indirect / 36
Indirect Indexed / 37
Absolute Indexed / 37
Relative / 38
Indirect / 38
6502 Input/Output Handling / 39
6502 Interrupts / 40
Reset Interrupt / 41
Non-Maskable Interrupt (NMI) / 42
Interrupt Request (IRQ) / 43
The BRK Instruction / 44
The 6502 Memory Space on the /e / 45
RAM Memory / 46
Input/Output (I/O) Memory / 48
ROM Memory / 49
Further Reading for Chapter 2 / 50

3 The System Monitor / 53
The System Monitor Commands / 54
The DISPLAY Command: Displaying the Contents of Memory / 55
The STORE Command: Changing the Contents of Memory / 57
The MOVE Command: Copying the Contents of Memory / 68
The VERIFY Command: Comparing Ranges of Memory / 62
The EXAMINE Command: Examining the 6502’s Registers / 62
The GO Command: Running a Program / 63
The LIST Command: Disassembling Assembly-Language
Programs / 64
The NORMAL and INVERSE Commands: Changing Video Display
Modes / 66
The ADD and SUBTRACT Commands: Simple Arithmetic / 66
The BASIC and CONTINUE BASIC Commands: Entering
Applesoft / 66
The USER Command: User-Defined Commands / 68
The READ and WRITE Commands: Cassette Tape I/O
Commands / 69
The KEYBOARD and PRINTER Commands: Redirecting Input and
Output / 70
Multiple Commands on One Line / 71
System Monitor Subroutines / 72
Further Reading for Chapter 3 / 76

4 Applesoft BASIC / 77
Applesoft Memory Map / 78

Contents [_1 vii

Tokenization of Applesoft Programs / 83
Keyword Tokens / 84
Storage of Applesoft Variables / 88
Storage of Simple Variables / 89
The Name Header / 91
The Data Field / 91
End of Simple Variables / 93
Storage of Array Variables / 93
The Name Header / 94
Dimensioning Bytes / 95
The Data Field / 95
End of Array Variables / 96
Representation of Integer Numbers / 96
Representation of Real Numbers / 98
Number Theory / 98
Binary Floating-Point Format / 98
How an Applesoft Program Runs / 181
The CHARGET Subroutine / 102
Changing Program Flow / 104
Finding Line Numbers / 105
Linking Applesoft to Assembly-Language Subroutines / 105
The CALL Command / 106
The & Command / 107
The USR Function / 108
Applesoft’s Built-In Subroutines / 109
Using Applesoft’s Built-In Subroutines / 116
Locating Variables / 116
Evaluating Formulas / 120
Converting Numbers / 121
Further Reading for Chapter 4 / 125

5 Disk Operating System / 127

The Internal Structure of DOS 3.3 / 128
DOS 3.3 Memory Map / 128
DOS 3.3 Page 3 Vectors / 129
Volume Table of Contents (VTOC) / 129
Diskette Catalog / 133

File Types / 135

Track/Sector List (TSL) / 135
Storing File Data / 136
RWTS—Accessing the Diskette Directly / 137
DOS 3.3 READ SECTOR Program / 147

The Internal Structure of ProDOS / 148
ProDOS Memory Map / 150
ProDOS Page 3 Vectors / 151

viii [_] Inside the Apple //e

Volume Bit Map / 152
Diskette Directory / 153
“Protecting’’ Files / 157
Storing File Data / 158
MLI—Accessing the Diskette Directly / 160
ProDOS READ.BLOCK Program / 162
Further Reading for Chapter 5 / 166

6 Character Input and the Keyboard / 169
Standard Character Input Subroutines / 173
Reading One Character / 174
RDKEY ($FD@C) / 174
Keyboard Input (84-Column Firmware Off) / 177
Keyboard Input (84-Column Firmware On) / 177
Escape Sequences / 178
RDCHAR ($FD35) / 180
Reading a Line of Characters / 180
Changing Input Devices: The Input Link / 182
How About Output? / 183
Designing a KSW Input Subroutine / 184
Replacing the Keyboard Input Subroutine / 184
DOS 3.3, ProDOS, and the Input Link / 187
The Keyboard / 191
Encoding of Keyboard Characters / 191
Special Keys / 192
The “Apple” Keys / 192
Keyboard I/O Locations / 193
Modifying the Keyboard Input Subroutine / 195
Keyboard Auto-Repeat / 202
Keyboard Type-Ahead / 205
Potential Problems with SOFTWARE TYPE-AHEAD / 217 -
Resetting the Apple /e / 218
Special RESET Procedures / 218
Trapping “Soft” RESETs / 218
Trapping RESET from Assembly Language / 220
Trapping RESET from Applesoft / 221
Further Reading for Chapter 6 / 226

7 Character and Graphic Output and Video Display Modes / 227
Text Mode / 228
Turning on the Text Display / 229
Text Mode Memory Mapping / 232
49-Column Text Mode / 233
80-Column Text Mode / 236
Using Page2 of Text / 237
Video Display Attributes: Normal, Inverse, Flash / 239

Contents [__1 ix

Standard Character Output Subroutines / 241
Video Output (84-Column Firmware Off) / 245
Video Output (88-Column Firmware On) / 245
Video Screen Windowing / 246
How COUT1 and BASICOUT Set the Video Attribute / 248
Changing Output Devices: The OUTPUT Link / 249
Designing a CSW Qutput Subroutine / 250
Replacing the Video Output Subroutine / 251
DOS 3.3, ProDOS, and the Output Link / 252
Low-Resolution Graphics Mode / 253
Turning on the Low-Resolution Graphics Display / 253
Low-Resolution Graphics Screen Memory Mapping / 285
Low-Resolution Graphics Colors / 256
Double-Width Low-Resolution Graphics / 256
Turning on Double-Width Low-Resolution Graphics / 257
> Double-Width Low-Resolution Graphics Screen Memory
Mapping / 258
Double-Width Low-Resolution Graphics Colors / 259
Built-In Support for Low-Resolution Graphics / 260
High-Resolution Graphics Mode / 260
Turning on the High-Resolution Graphics Display / 261
High-Resolution Graphics Screen Memory Mapping / 263
High-Resolution Graphics Colors / 266
Animation with High-Resolution Graphics / 267
Double-Width High-Resolution Graphics / 269
Turning on Double-Width High-Resolution Graphics / 272
Double-Width High-Resolution Graphics Screen Memory
Mapping / 273
Double-Width High-Resolution Graphics Colors / 273
Built-In Support for High-Resolution Graphics / 279
Further Reading for Chapter 7 / 277

8 Memory Management / 279
Bank-Switched ROM Areas / 280
The INTCXROM Switches: Switching the $C100 . . . $CFFF Memory
Space / 280
The SLOTC3ROM Switches: Switching the $C300 . . . $C3FF Memory
Space / 283
16K Bank-Switched RAM Areas / 284
Using Bank-Switched RAM / 285
Reading the Status of the Bank-Switched RAM Soft Switches / 286
Auxiliary Bank-Switched RAM / 288
Using Bank-Switched RAM / 289
Bank-Switched RAM and ProDOS / 291
Auxiliary RAM Memory Area / 291
Using Auxiliary Memory / 292

X [Inside the Apple //e

The ALTZP Switch / 292
The RAMRD and RAMWRT Switches / 295
Auxiliary Memory Support Subroutines / 295
AUXMOVE ($C311)—Transferring data to and from auxiliary
memory / 296
XFER ($C314)—Transferring control to a program from main or
auxiliary memory / 300
Running Co-Resident Programs / 301
Initialization of the Auxiliary Stack / 308
Using CONCURRENT / 308
Limitations of CONCURRENT / 310
Further Reading for Chapter 8 / 311

9 The Speaker and the Cassette Port / 313
The Speaker / 313
Generating Musical Notes / 314
Generating Music / 317
The Cassette Port / 320
Digitizing Voice / 323
Further Reading for Chapter 9 / 333

10 The Game I/0 Connector / 335

Game I/0O Connector Experiments / 336

Game Controller Inputs / 338

Push Button Inputs / 342

Annunciator Outputs / 345
Experimenting with the Annunciators / 346
Special Use for AN3 / 348

Strobe Output / 349

Summary of Game I/O Connector Locations / 349

Further Reading for Chapter 10 / 350

11 Peripheral-Card Expansion Slots / 353
Peripheral-Card I/O Memory Locations / 353
Peripheral-Card ROM / 355
Peripheral-Card Expansion ROM / 357
Peripheral-Card Scratchpad RAM / 358
The Auxiliary Connector and Slot 3 / 359
Programming for Peripheral Cards / 360

Relocatability / 360
Software Protocols / 362
Applesoft Protocol / 362
Pascal 1.9 Protocol / 363
Pascal 1.1 Protocol / 363
ROM Identification Bytes / 365
Further Reading for Chapter 11 / 366

Contents [xi

Appendix | American National Standard Code for Information
Interchange (ASCII) Character Codes / 367

Appendix Il 6502 Instruction Set and Cycle Times / 373

Appendix lll Apple /e Soft Switch, Status, and Other 1/0
Locations / 379

Appendix IV Apple //e Page 3 Vectors / 387

Appendix V Additional Programs on the Optional Diskette / 391
Appendix VI Recent Enhancements to the Apple //e / 395

Index / 405

PREFACE

I can sense what you're saying right now: “Oh, no, not another
book on the Apple!” Well, yes, it is, but don’t put it down just yet.
It’s not simply another book on how to write programs in Applesoft
BASIC or on how to use your favorite spreadsheet program. Rather,
it's a detailed study of how the Apple //e works (from a software
point of view) and how you can control it with your own programs.

You will first be introduced to the 6562 microprocessor that
controls the //e and to some important 6502 programming con-
cepts. You will then be conducted on an internal tour of the //e’s
operating systems (the system monitor, DOS 3.3, and ProDOS) and
of its primary language, Applesoft BASIC. Along the way several
programming examples (written in Applesoft and 6502 assembly
language) will be presented to illustrate important principles and
features.

Once this background information has been presented, you will
be shown how the //e reads information from the keyboard, displays
information on the video screen, and how you can write and install
your own input/output subroutines. In addition, all of the //e’s video
display modes, including 8@-column text and double-width graph-
ics, will be explained.

The last few chapters of the book will show you how to manage
the //e’s internal and expansion memory spaces, how to use the
speaker and cassette port, and how the //e’s peripheral expansion
slots are used.

I am sure this book will be of great interest to all readers who
want to know what makes the //e tick. It is geared to the more
advanced reader: You will be assumed to have a working knowl-
edge of Applesoft and at least some familiarity with 6502 assembly
language. If you are a computer novice, then the references that
are included at the end of each chapter should be consulted for
further information on programming techniques. No matter what
your level of expertise, however, you should find this book an ex-
cellent source of programming tips and ideas.

I would like to thank two people in particular for reviewing
portions of the manuscript before publication: Archie Reid and
Vern Little. Archie set me straight on how to generate music on
the //e’s speaker and how to digitize voice through the cassette
port. Vern is an electrical engineer and he prevented me from
putting my foot in my mouth when talking about anything other
than software. Thanks are also due to Vern for helping to convince
me to shell out $1,800 for a 16K Apple II in 1978 when I should

xiii

xiv [Inside the Apple //e

have been saving money to finance my stay at law school; it turns
out to have been the most important purchase I have ever made.

Brady Communications also arranged for several independent
technical reviewers to review the manuscript and I thank them for
all their invaluable assistance, particularly Val Golding and Cecil
Fretwell.

Gary B. Little
Vancouver, British Columbia
September 1984

About the Author

Gary B. Little has been programming Apple com-
puters for fun and profit since 1978. He is a founding
member of Apple’s British Columbia Computer So-
ciety and of SAGE (Serious Apple Group, Eh!). He
is currently a director of the Pacific Coast Computer
Fair Association, the Software Industry Develop-
ment Association, and Vancouver PC Users Group.
When he isn’t tinkering with computers, he prac-
tices law in a downtown Vancouver, British Colum-
bia law firm. Gary lives in Vancouver with his wife
Pamela and their two little ones, Sam and Roo.

Xv

Introduction to Apple and
the Apple //e

The Apple //e represents Apple Computer, Inc.’s latest full-size
model in its highly popular Apple II family of computers and was
first announced in January 1983. The earlier members of this fam-
ily are the original Apple II (1977) and the Apple II Plus (1979);
the newest member is the portable Apple //c (1984).

In this book we will be taking an advanced “inside” look at the
Apple //e itself. Bear in mind, however, that much of what will be
said will also apply to its two predecessors and to the Apple //ic
because Apple has made a substantial effort to maintain a high
degree of compatibility with other members of the Apple II family.
The discussion will be limited to the //e’s built-in language and
operating system (Applesoft and the system monitor) and to the
two disk operating systems used with them, DOS 3.3 and ProDOS.

Apple Computer, Inc. is an interesting and exciting company. It
not only produces innovative products, it also ensures that im-
portant technical information concerning these products is di-
vulged to whoever needs it. This goes against every rule that the
computer industry was following back in 1977 when Apple first
made its presence felt. This “open-system” policy fuels software
development, and this is one of the main reasons Apple has been
so successful —after all, who wants to buy a computer for which
no software is available?

A CONDENSED HISTORY OF APPLE
COMPUTER, INC.

The history of Apple Computer, Inc. is a fascinating one and
represents a real rags-to-riches (or is that “garage-to-multina-
tional-corporation”’?) story. Let’s take a look at what Apple has

2 [Inside the Apple //e

1976

been up to since it was first formed in 1976 and how the Apple II
slowly evolved into the Apple //e.

In the beginning, Apple was made up of just two individuals:
Stephen Wozniak (“Woz”’) and Steven Jobs. Woz provided the
hardware and software expertise and almost single-handedly de-
signed the company’s first two computers, the Apple I and the
Apple II (Rod Holt helped; he designed the Apple IT's power supply).
A patent application was subsequently filed with respect to the
Apple II on April 11, 1977, and U.S. patent #4,136,359 was even-
tually issued in early 1979. Jobs was largely responsible for mar-
keting and raising financing, and it was he who came up with the
“Apple” name (Jobs was apparently thinking of a job that he had
recently had in an Oregon orchard). In the early going, both part-
ners were still working for other computer companies in Califor-
nia’s Silicon Valley, Jobs with Atari and Woz with Hewlett-Pack-
ard. Fortunately for Apple, Hewlett-Packard was not interested in
Woz's design for a personal computer and gave him a release so
that he could deal with it as he saw fit.

The Apple I was designed to be sold to and used by hobbyists;
only about 175 were sold. The Apple II, however, was designed
with a much larger market in mind (although Woz claims he simply
wanted to build a computer with which he could play Atari’s
“Breakout” game). That market quickly materialized as a result
of the startling combination (for 1977) of excellent hardware, at-
tractive packaging, and superb documentation. The Apple //e, which
was released six years later, still resembles the original Apple II
and it still operates in much the same way.

Woz decided to use the MOS Technology 6502 microprocessor
to control the Apple II. This decision was dictated not by the 65@2’s
reliability, powerful instruction set, or any other design charac-
teristic, but rather by its price. Whereas other microprocessors
were selling for hundreds of dollars in 1976 and were difficult to
find, the 6502 was readily available and it cost only about $20.

Wozniak wrote all the software for the original Apple II that was
stored in its read-only memory (ROM). This included a version of
the BASIC programming language called Integer BASIC (which
can't handle decimal numbers but is great for games), a system
monitor for debugging and for handling fundamental input/output
operations, a set of mathematical subroutines, a mini-assembler
for entering programs in assembly language, and “Sweet 16,” a

1977

1 Introduction to Apple and the Apple /e 1 3

software-simulated 16-bit microprocessor (Woz was way ahead of
his time).

To raise a little money for their fledgling venture, Wozniak sold
his Hewlett-Packard pocket calculator and Jobs sold his Volkswa-
gen bus. Overhead expenses were cut to the bare minimum by
setting up operation in the garage of Jobs’ parents. As 1977 rolled
around, however, it became clear that more money, a lot more
money, was going to be needed.

Since Jobs was the partner responsible for marketing the Apple
II, it was he who began searching for venture capital. That search
eventually led him to Mike Markkula, a former marketing manager
at Intel, an integrated-circuit designing company. Markkula, Jobs,
and Wozniak quickly struck a deal whereby Markkula agreed to
put $250,000 into Apple in exchange for an equal partnership in-
terest. He then proceeded to use his expertise to line up bank fi-
nancing and additional capital funding. Apple was then finally
ready for the mass market!

The Apple II was formally announced for sale at the 1st West
Coast Computer Faire in early 1977 and it was an instant success.
The main reasons for its early success were that it was easily ex-
pandable (more memory could easily be added to it and eight slots
were available for peripheral devices when they became available),
it had a full-size keyboard, and it had color graphics. Oh, yes, it
also looked great!

Not that there weren’t any problems, however. For example,
lower-case characters could not be produced by the keyboard and
the video display was only forty columns wide. These shortcomings
officially persisted until the introduction of the Apple /e, although
several other sources of upper- and lower-case keyboards and 8-
column boards did pop up in the interim.

One software problem had to be remedied quickly. Integer BASIC
did not support decimal (floating-point) numbers or functions, and
so business and scientific use of the Apple II was necessarily lim-
ited. Apple began to take steps to remedy this in the summer of
1977 when it negotiated the purchase of about 10,000 lines of pro-
gram source code for a floating-point version of BASIC from Mi-
crosoft Corporation. This code was written in 6502 assembly lan-
guage and so could be readily adapted to run on the Apple II.

By this time Apple had a few employees, one of which was a
young programmer by the name of Randy Wigginton. Wigginton

4 [Inside the Apple //e

1978

1979

reworked the Microsoft source code and came out with a prelim-
inary version of a floating-point BASIC that would run on the Apple
IL. This version was called “Applesoft - Extended Precision Floating
Point BASIC Language’ and was released in October 1977. Further
work was required to polish Applesoft into a final product and this
was done during the winter of 1977.

The final version of Applesoft, Applesoft][, was finally released
in May 1978 and this same version is still in use today on the Apple
/le. It was first available on cassette tape only, but was later pro-
vided in ROM on a card that could be plugged into a slot on the
Apple II; it eventually replaced Integer BASIC on the motherboard
when the Apple II Plus was released in 1979.

Probably the most important new product released in 1978 was
the Disk II disk drive and controller card which are still used on
the Apple //e today. The disk drive revolutionized the software
business because for the first time it was feasible to develop so-
phisticated programs that could be easily loaded and that could
quickly and reliably access large data bases. Until the disk drive
was released, all programs had to be saved to and loaded from
cassette tape, which was invariably an exercise in frustration. Many
a cottage software business started up after the disk drive became
available.

The Disk IT was controlled by a program called the Disk Oper-
ating System (DOS), first written by Bob Shepardson and later
substantially modified by Randy Wigginton. DOS has undergone
several revisions throughout the years and the current version is
DOS 3.3. This version is still being shipped with the Apple //e
(together with a brand-new DOS called ProDOS).

Sales really ballooned for Apple in 1979. It was able to increase
sales by a total of forty million dollars (!) over the previous year,
to a total of forty-eight million dollars. By this time, the Apple II
was selling not only because it was an excellent hardware package
but also because an ever-increasing supply of software was avail-
able that could be run on it. One important piece of software,
VisiCalc, the very first financial spreadsheet program, is reputed
to have been directly responsible for stimulating the purchase of
tens of thousands of Apple II computers.

1 Introduction to Apple and the Apple /e C_15

The Apple I underwent a minor operation in 1979 and came out
of it with a new name, Apple II Plus. The Apple IT Plus is essentially
the same as an Apple II, except that its ROM chips contain Apple-
soft][rather than Integer BASIC and its system monitor has been
changed to support more powerful screen-editing commands and
to allow the Apple II to automatically run a program from diskette
whenever the power is turned on. At the same time, a couple of
handy debugging commands (step and trace) were taken out of the
system monitor, but they were not missed by many users. The
modifications to the system monitor were written by John Arkley.

Apple announced its Pascal Operating System in 1979 as well.
Because Pascal requires a huge amount of memory in which to
operate, Apple also released a new peripheral card, called a lan-
guage card, at the same time. The language card effectively added
another 16K of memory to the Apple II, which could “replace” the
Applesoft ROMs when Pascal was being used. The language card
was plugged into slot #0 of the Apple II but in the //e it is simulated
in the memory chips on the motherboard. These different imple-
mentations, however, are transparent to the user.

1980-1982

Apple’s sales continued to explode in the early eighties: $117
million in 1980, $334.8 million in 1981, and $583.1 million in 1982!
Most of these sales were generated by the Apple II Plus which
eventually set a record for monthly sales in December 1982.

The infamous Apple /// was released in 1980. For several reasons,
notably its early unreliability and high price, it never established
a significant market presence even though a modified version (known
as the Apple /// Plus) was still being produced in 1984. It comes
with an Apple II emulation mode that allows it to run most, but
not all, of the software that runs on the Apple II.

In the winter of 198@-81, Apple made a public offering of stock,
which was quickly snapped up. The proceeds were largely directed
into intensive (and expensive) research and development projects.
We'll see in a moment what those projects led to.

If imitation is the sincerest form of flattery, then Apple must
surely be crimson red. Since about 1980, tens of thousands of un-
official Apple II “clones” (euphemistically called “‘compatibles’’)
have been manufactured, mostly by Taiwanese concerns. To achieve
absolute compatibility with the Apple II, most of these clones con-
tain ROMs that are direct copies of the Applesoft and system mon-
itor ROMs. Not surprisingly, Apple considers this to be highly

6 [Inside the Apple //e

1983

improper and has successfully instituted legal proceedings in the
United States and many other countries against several manufac-
turers in order to protect its copyrights and patent rights. The
importation of Apple II clones to the United States has also been
reduced because Apple has registered its copyrights with U.S. Cus-
toms. The Customs authorities have the power to confiscate ship-
ments of products that violate Apple’s copyrights.

At Apple’s Annual General Meeting on January 19, 1983, two
major announcements were made. First, the Lisa computer was
announced, a computer that was immediately recognized as a tech-
nological and innovative triumph because of its ease of use and
excellent operating system. Its retail price, however, was initially
too high for it to sell in the quantities that Apple would have liked.
Subsequent price reductions, coupled with increasing availability
of software, has helped to remedy this problem.

The more important announcement as far as we are concerned
was the introduction of the successor to the Apple II Plus, the Apple
/le. The Apple //e was carefully designed to maintain as high a
degree of compatibility with the Apple II Plus as possible so that
the thousands of software packages developed for the Apple II Plus
would not have to be rewritten. Several new features were added
to the //e, however, that make it a significantly different computer:
built-in support for an 80-column display, an upper- and lower-
case keyboard, self-testing subroutines, and enhanced editing ca-
pabilities.

In addition, Apple significantly simplified the construction of
the //e by reducing the number of integrated circuits on the moth-
erboard from 109 on the Apple II Plus to only 31! It did this by
designing two special integrated circuits, called the IOU (input/
output unit) and MMU (memory management unit), to replace
many of the discrete components used on the II Plus.

The manager of the team that designed the Apple //e was Peter
Quinn. The hardware was designed by Walt Broedner and most of
the modifications to the old system monitor were made by Rick
Auricchio and Bryan Stearns.

There was also a major change at the managerial level at Apple
in 1983. On April 8, Apple announced that Mike Markkula had
resigned as President and that John Sculley had been named to
succeed him. Sculley was formerly president of Pepsi-Cola and it
is reported that his salary is in excess of one million dollars per
year.

1 Introduction to Apple and the Apple //e 1 7

1984

At its January 24, 1984, Annual General Meeting Apple an-
nounced the Macintosh computer (“Mac”’), a scaled-down version
of Lisa. Mac undoubtedly represents another mass-market best
seller for Apple because it is easy to use and it is priced affordably.
Within a month of its release, at least two Mac-specific magazines
and several books had been published. This is reminiscent of what
happened in 1979 when sales of the Apple II began to skyrocket.

On the //e front there was one major announcement at the Annual
General Meeting: the release of a successor to DOS 3.3 called ProDOS.
This disk operating system is significantly different from, but up-
wardly compatible with, DOS 3.3. Most Applesoft programs, when
transferred to ProDOS-formatted diskettes, will run without mod-
ification. Programs and other files can be transferred between DOS
3.3 and ProDOS by using a utility program supplied with ProDOS.
The main advantages of ProDOS are that it is faster, it is easier
for programmers to use, it supports a directory structure that is
more convenient for use with larger-capacity diskettes or hard
disks, and it creates files that can be read by the Apple ///.

On April 24, 1984, Apple announced a scaled-down, portable
version of the Apple //e called the Apple //c and made it known to
the world that it will be supporting the Apple II concept for a long
time to come. This was apparent from the theme of the event at
which the Apple //c was announced: “The Apple II forever.” As
expected, the Apple //c will run almost all software written for the
Ile.

UNDER THE HOOD OF THE APPLE //e

Although this book is primarily concerned with software, let’s
begin by taking a quick look at the hardware that makes up the
Apple //e. You can’t see much with its lid on, except the keyboard
at the front and the video, cassette, and game paddle connectors
at the back. So, turn off the power and take the lid off.

The biggest component under the hood is the power supply on
the left side. The main circuit board (called the ‘“motherboard’’)
contains only 31 integrated circuit packages; these include the 6502
microprocessor (see Chapter 2), the IOU and MMU, eight random-
access memory (RAM) chips, three read-only memory (ROM) chips
(which contain Applesoft, the system monitor, and the keyboard
decoder), and miscellaneous support chips.

Lined up at the back of the motherboard are seven 5@-pin con-

8 [Inside the Apple //e

nectors called slots. These slots are numbered consecutively from
1 through 7, with slot 1 being the leftmost slot. Peripheral cards
can be installed in these slots to allow the //e to control a variety
of input/output (I/O) devices. In fact, you undoubtedly have a pe-
ripheral card already installed that is connected by a ribbon cable
to a disk drive. There is an eighth slot, called the auxiliary con-
nector, that is located at the left center of the motherboard (or
directly in front of slot 3 if you are using a United Kingdom Apple
/fe). This 6@-pin connector is designed for use by an optional 80-
column text card available from Apple (and, now, from others).
This card permits the use of a video display mode in which 8@
characters may be displayed on one screen line instead of the stand-
ard 40. An extended 80-column text card is also available that
contains 64K of memory and that can be used to generate special
double-width graphics that were unavailable on the Apple IT and
Apple II Plus. The peripheral-card expansion slots will be discussed
in Chapter 11.

On the right near the back you will see the 16-pin game I/O
connector to which joysticks, push buttons, and other game-play-
ing paraphernalia can be attached. We'll see some examples of
how to attach these, and other, devices in Chapter 10.

The last item of interest is the //e’s built-in speaker. As we will
see in Chapter 9, the speaker can be used to produce both harsh
sound and beautiful music. It is mounted to the bottom plate of
the //e and is connected to the motherboard through a twisted pair
of wires.

So much for the //e’s hardware!

LEARNING THE FUNDAMENTALS

The purpose of this section is to introduce you to some of the
fundamental concepts and terminology that will be used in this
book. You should realize, however, that this book has not been
written for computer novices and that more general books should
be consulted if more background information is required.

Numbering Systems

We are all familiar with the decimal numbering system that
makes use of ten fundamental digits. This system, however, is not
sacred and we could, if we preferred, use other systems that use
fewer or more digits.

1 Introduction to Apple and the Apple //e (19

When dealing with computers, it is often convenient to use the
binary numbering system and the hexadecimal numbering system.
The binary numbering system uses only two digits, @ and 1. The
hexadecimal system uses the following sixteen digits:

9,1.234,5,6,789ABCDEF

which represent decimal numbers @ through 15, respectively.

The //e’s 6502 microprocessor performs all its internal operations
using binary numbers because it has available to it thousands of
logic cells that can easily be turned either “on” or “off”’ to represent
the binary digits “1” or “@”, respectively. Binary numbers, how-
ever, are usually not used when writing a program because they
are difficult to read and are prone to transcription errors. Decimal-
number equivalents of binary numbers are often used instead, but
the pattern of binary ones and zeros to which they refer are often
not immediately obvious (quick now, what is the binary represen-
tation of 225?). The hexadecimal numbering system, however, is
an ideal alternative because each hexadecimal digit defines exactly
one of the sixteen four-digit patterns of binary ones and zeros,
making conversion between binary and hexadecimal very easy.

In this book, hexadecimal numbers will be preceded by “$” to
distinguish them from decimal numbers. They will be used when
referring to data values or to memory addresses.

Bit Numbering and “Significance”

As you undoubtedly know, the basic unit of storage in the Apple
/le, and most other microcomputers, is the byte. As far as the 6502
microprocessor is concerned, each byte is made up of eight bits,
each of which can be either on or off (a computer likes things that
can exist in only one of two states). This means that binary numbers
from 00000000 to 11111111 (@ to 255 decimal) can be stored in a
byte.

Each bit in a byte is associated with a certain binary weight
equal to the number that the byte would represent if that bit were
on and all the other bits were off. These binary weights are as
shown in Figure 1-1.

(Notice that the bits within the byte are numbered from @ to 7
and not from 1 to 8.) To determine the decimal representation of
the bit pattern, it is simply necessary to add up the binary weights
of all bits in the byte that are on. Since bit 7 contributes most, it
is called the most-significant bit or “high-order” bit. Conversely,
bit @ is referred to as the least-significant bit or “low-order” bit.

10 [Inside the Apple //e

7 6 5 4 3 2 1 0 ~«—bit numbers

128 64 32 16 8 4 2 1 <&—binary weights

Figure 1-1. Binary weights of each bit in a byte.

Bit 7 of a byte is also called the “sign bit” because it is often
used to indicate whether the number stored in the byte is positive
or negative (if it is 1, then the number is considered to be negative).
The 6502 microprocessor that controls the //e uses a special internal
status register which, among other things, holds a flag that rep-
resents the sign of any number being dealt with (see Chapter 2).
Special 6502 instructions are available that can change the flow
of a program depending on the state of this sign flag (they are
called “BPL,” branch on plus, and “BMI,” branch on minus). We
are going to see in later chapters that the //e uses bit 7 of several
special memory locations to hold information relating to the state
of the system. When these status locations are examined in an
assembly-language program, BPL can be used to transfer control
if the status is off (bit 7 is @) and BMI can be used to transfer control
if the status is on (bit 7 is 1). The same thing can be done from an
Applesoft program by using the PEEK command to read the num-
ber stored at the status location. If bit 7 is on, then the value read
will be greater than or equal to 128 (since the binary weight of bit
7 is 128).

We will also come across situations in this book where more than
one byte is required to store a number (i.e., the number is larger
than 255). In these cases, the byte that contains information on the
highest-weighted bits for the number is called the most-significant
byte or high-order byte, and the byte that contains information on
the lowest-weighted bits is called the least-significant byte or low-
order byte.

Pointers and VVectors

As we will see in Chapter 2, the 6582 microprocessor is capable
of controlling a memory space that is mapped to the addresses
from $0000 . .. $FFFF. Since one byte can hold exactly two hex-
adecimal digits, any address in the 6502’s memory space can be
stored in two bytes.

A pointer or “vector” is a pair of memory locations that contains
the address of another location to which the pointer is said to be
pointing. The least-significant byte of the pair is always stored in

1 Introduction to Apple and the Apple //e C_1 11

the first memory location and the other byte in the next higher
location. To determine the address stored in a pointer, you can use
the following Applesoft formula:

ADDR = PEEK(X)+256+PEEK(X+1)

where X represents the first memory location that the pointer oc-
cupies. The second byte in the pair is multiplied by 256 since it
represents the number of 256-byte units that make up the address.

The 6502 microprocessor makes extensive use of pointers to ac-
cess data arrays and to handle interrupts (see Chapter 2). Applesoft
also maintains a great many pointers for keeping track of its many
data areas (see Chapter 4).

Control Characters

Control characters are special characters that are entered from
the keyboard by using the CONTROL key. Although they do not
represent visible symbols, they often cause the //e to perform spe-
cial functions. Such characters will be denoted in this book by
<CTRL-X>, where X refers to any alphabetic character (A. . .Z) or
one of the following six special symbols: & [\] " —. The CONTROL
key acts just like another SHIFT key in that it and one other key
must be pressed at the same time in order to enter a control char-
acter from the keyboard. The procedure involves first pressing the
CONTROL key and then, while still holding it down, pressing the
other key (“X” in the above example).

6502 Assembly Language

Many of the programs presented in this book are written in a
programming language that can be used to generate a series of
bytes (which represent microprocessor instructions and data) that
can be interpreted and directly executed by the //e’s 6582 micro-
processor. This programming language is called “6502 assembly
language.”

There are two steps involved in developing an assembly-lan-
guage program. First, a source code for the program must be en-
tered that defines the program in a human-readable form using
symbolic labels for addresses and data, special three-character
mnemonics for the permitted 6502 instructions, and special sym-
bols to indicate the addressing modes used by the instructions (see
Chapter 3 for a detailed discussion of 6502 instructions and ad-
dressing modes).

12 [Inside the Apple //e

A typical line of source code looks something like this:
LABEL LDA ($28),Y 3sThis is a comment

and is made up of four distinct fields. The first field is the label
field and it holds the symbolic name (if any) for the current location
within the program. The next field is the instruction field and it
holds the three-character mnemonic for the 6502 instruction (“LDA”
in the example). It is immediately followed by the operand field,
which holds the addressing mode used by the instruction, that is,
information relating to the method the instruction is to use to
access the data or memory location on which it is to act (“($28),Y”
in the example). The last field is the comment field and is used for
documenting the program. Each field is separated from the other
by at least one blank space; in addition, most assemblers require
comments to be preceded by a semicolon.

The second step is to interpret or “assemble’ the program source
code using a 6502 assembler. This is done in order to produce a
file that contains the bytes defined by the program in a format
that the 6502 can directly execute (the “object code” or “machine
language”).

The assembly-language programs presented in this book were
all entered and assembled using the BIG MAC Macro Assembler
published by A.P.P.L.E. (21246 68th Ave. S., Kent, WA 98032). If
you want to modify and reassemble the programs presented in this
book and you are not using BIG MAC, then you will likely have to
make several changes to the program source codes to account for
any differences in syntax and command structure. Differences usu-
ally arise in the area of “pseudo-instructions’’; these are assembler-
specific commands that appear in the 6502 instruction field of a
line of source code, but that represent commands to the assembler
rather than 6502 instructions. They can be used to place data bytes
at specific locations within the program (DFB, DS, and ASC), to
define symbolic labels (EQU), to indicate the starting address of
the program (ORG), and for several other purposes.

Here are descriptions of some of BIG MAC’s more commonly
used pseudo-opcodes:

DFB-—Define a byte of data

DS —Define a data space

ASC—Define an ASCII string

EQU—Equate a symbolic label to a number or a memory lo-
cation

ORG—Specify origin (starting address) of object code

1 Introduction to Apple and the Apple //e 1 13

Some of the more popular assemblers available for the //e are
listed in the references at the end of Chapter 2.

Running Assembly-Language Programs

To run an assembly-language program, two steps must take place.
The first step is obvious: the program must be loaded into memory.
This can be done by storing the bytes that make up the programs
into the appropriate area of memory by using Applesoft POKE
statements or by using the system monitor STORE command (see
Chapter 3). The easier method, however, is to load it from the
binary file on diskette in which it is contained (a “B” is displayed
to the left of a binary file’s name when a diskette is CATALOGued)
by using the DOS BLOAD command. The BLOAD command must
be entered while you are in Applesoft and is of the form

BLOAD FILENAME,Aaddr

where “FILENAME" represents the name of the binary program
and “addr” represents the memory location at which it is to be
loaded, in hexadecimal (if preceded by “$”') or decimal notation.
The “,Aaddr” suffix can be omitted if you wish; if it is, then the
file will be loaded into memory at the same position it was in when
the BSAVE command was used to save it to diskette.

The second step is to actually run the program. This can be done
by using the Applesoft CALL command, which is of the form

CALL start

where “start” represents the decimal starting address of the pro-
gram. For example, to run a program that begins at location $300
(768 decimal), you would enter the command CALL 768. The al-
ternate way of starting the program is to use the system monitor’s
GO command (see Chapter 3). This can be done by entering the
system monitor from Applesoft using a CALL -151 command and
then, for a program beginning at location $300, entering the com-
mand “300G”.

Some of the programs in this book will not operate properly if
they are loaded and called in this way (they will be specifically
noted). Instead, the DOS BRUN command must be used to load
and execute them directly from diskette. This command can be
entered as follows:

BRUN FILENAME
where “FILENAME” represents the name of the binary program.

14 [Inside the Apple //e

When the BRUN command is used, the program will be loaded
into memory at the location from which it was saved to diskette
using the DOS BSAVE command. To save a copy of a binary pro-
gram that you have already entered into memory to a diskette,
enter the command

BSAVE FILENAME,Aaddr,Lnum

where “addr” represents the starting address of the program and
“num’”’ represents the number of bytes in the program.

WHAT WON'T BE COVERED

There are a few topics that will not be discussed at length in this
book. Integer BASIC, the BASIC that was built into the first few
thousand Apple IIs, will not be discussed because it is rarely used
anymore and is fast becoming obsolete. In fact, the new ProDOS
operating system does not allow Integer BASIC programs to be
run at all.

The only language that will be discussed at length will be Ap-
plesoft. For more information on Apple Pascal or Apple Logo, you
will have to go elsewhere.

Although Apple produces a wide range of interface cards (super
serial card, parallel printer card, etc.) and peripheral devices
(printers, modems, graphics tablets, etc.), these will not be dis-
cussed. The general techniques used to interface these devices to
the //e, however, will be discussed in Chapter 11.

USING THE OPTIONAL DISKETTE

This book can be purchased either with or without a program
diskette, or the diskette can be purchased separately. The diskette
contains all the programs that are presented as examples in the
following chapters and will allow you to quickly load a program
into memory, or modify a program, without having to endure the
pleasure of typing it in from scratch.

As an added bonus, several useful programs are included on the
diskette that are not described in the main body of this book.
Instructions on how to operate these programs can be found in
Appendix V.

The diskette has been initialized in the Apple DOS 3.3 format
rather than the ProDOS format. If the programs are to be trans-
ferred to a ProDOS-formatted diskette, then the CONVERT pro-

1 Introduction to Apple and the Apple //e C__1 195

gram on the Apple ProDOS system diskette must be used. One of
the programs presented in this book, READ.BLOCK, can be run
only in a ProDOS environment.

The files on the diskette are either Applesoft programs (marked
by “A” in the catalog), text files (marked by “T”), or binary pro-
grams (marked by “B”’).

The text files on the diskette are the source-code listings for the
binary programs and are in the format expected by the BIG MAC
assembler (use the “R” command from BIG MAC to load them).
Most other assemblers are also able to read text files. Keep in mind
that the source-code formats used by different assemblers do vary
and it may be necessary to modify a source code file to take into
account any such differences before the file can be properly assem-

bled.

The Applesoft programs and binary programs can usually be run
by using the standard RUN and BRUN commands, respectively.
Some of the binary programs, however, are designed to be called
from an Applesoft program only and should simply be loaded into
memory using the BLOAD command. Such exceptions will be noted
in the discussions that relate to these programs in this book.

FURTHER READING FOR CHAPTER 1

Historical background . ..

“Photograph of Apple 1,” Apple Orchard, April 1983, front cover.
The original Apple product. ;

A.L. Taylor III, ““Striking it Rich,” Time, February 15, 1982, pp.
42-47. Apple makes the front cover of Time!

P. Lopiccola, “Core of a New Apple,” Popular Computing, March
1983, pp. 114-117. How the Apple II Plus was transformed into
the Apple //e.

Standard reference work . ..
Reference Manual for /le Only, Apple Computer, Inc., 1982. In-

cludes detailed information on the hardware and software that
make up the Apple //e.

Introducing the premier of—

Programming Access Tools to Accompany Inside the Apple //e
Gary Little

Now you can discover the magic locked inside your Apple //e—faster and easier than ever before!
Programming Access Tools offers you virtually instant access to 30 major programs (including 17
assembler source code files.) With very little preparation or start-up time, you'll be working with such
programs as:

* Keyboard Input Routines * Disk Map
* Speed Up Cursor Auto Repeat Rate * RAM Disk Program
* How to Use Auxillary Memory * DOS Disk Volume Changer

* DOS Command Changer

Here's How to Order

Enclose a check or money order for $30.00, plus sales tax, slip in this handy order envelope and
maill No postage needed. Or charge it to your VISA or MasterCard. Simply complete the in-
formation below.

[0 YES!Iwantto unlock the magic found inside my Apple lle. Please rush me
Programming Access Tools for Inside the Apple lle (D5548-5). | have en-
closed payment of $30.00 plus sales tax.

Name Charge my Credit Card Instead
O VISA O MasterCard

Address

City State Zip Account Number

Expiration Date

Signature as it appears on card
| Brady Communications Company, Inc.
Bllall A Prentice-Hall Publishing Co.
Bowie, Maryland 20715 Dept.Y

AL L LI LTI LT L

' '
’ '
‘. '
1}
. '
N .
' '
N .
@
'
8
X

)
'
g
‘.‘
.,
H

NEEEn S

\\

See over for complete listings

|| || I NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1976 BOWIE, MD

POSTAGE WILL BE PAID BY ADDRESSEE

Brady Communications Co., Inc.
A Prentice-Hall Publishing Co.
Bowie, Maryland 20715

The 6502 Microprocessor

The “brains” of every microcomputer are represented by a com-
plex integrated circuit called a microprocessor that controls the
operation of the system as a whole. The microprocessor used in
the //e is called a 6502.

The 6502 is an example of what is usually called an “8-bit”
microprocessor. These types of microprocessors can handle data
only one byte at a time and they typically use 16 address lines.
Since each of these lines can be on or off, the 6502 is capable of
addressing 65,536 (2°16) memory locations at any given time. (Since
one “K” of memory is equal to 1,024 bytes, this represents a “64K”
memory space). This is in contrast to the newer wave of 16-bit
microprocessors that can manipulate two bytes of data at once and
have typical address spaces of one megabyte or more.

While the 6502 is operating, it is continuously interpreting a
stream of bytes in order to determine what it should do next. The
bytes in this stream are controlled by the computer program that
is being executed. This program contains instructions that enable
the 6502 to perform data transfers, input/output operations, logical
operations, simple arithmetic, and other fundamental control op-
erations.

In this chapter, we will take a brief look at the 6502 instruction
set and internal registers and describe how the 6502 has been
implemented on the //e. Note, however, that the purpose of this
chapter is not to teach you 6502 assembly-language programming,
but rather to review some of the more important principles relating
to the 6502 microprocessor. Consult the references at the end of
the chapter for a list of books that are available to teach you the
art of programming the 6502.

IMPORTANT 6502 CONCEPTS

The 65@2 forms only one part of a microcomputer system such
as the //e. The other important parts are the system memory (RAM

17

18 [Inside the Apple //e

and ROM) and the system input/output (I/O) devices. It is the 6502,
however, that is in charge of controlling both the accessing of
memory and the passing of data to and from the I/O devices.

The 6502 is told how and when to perform its chores by a series
of instructions that it is constantly interpreting. These instructions
will be discussed in the next section. In brief, they cause the 6502
to perform a variety of data-manipulation tasks using a set of six
internal registers that will be discussed below in the section en-
titled ‘6502 Registers.”

Zero Page and the Stack

This is a convenient time to introduce you to two rather impor-
tant areas of memory that are used in special ways by the 6502
microprocessor: zero page and the stack.

Each 256 bytes of memory that starts at an address that is an
integer multiple of $100 (256), i.e., $0000, $0100, $0200, . . ., $FF00
is called a “page” of memory. For example, the area of memory
from $BF@@ through $BFFF is referred to as page $BF. Zero page,
the page of memory from $0000 . . . $00FF, is treated in a special
way by the 6502. Generally speaking, whenever the address on
which a 6502 instruction acts is contained in zero page, the highest
two hexadecimal digits of the address do not have to be specified
(since they are always zero by definition). This not only reduces
the size of the program, it also allows the program to be executed
more quickly. No wonder, then, that zero page is prime real estate
as far as the 6502 is concerned.

Page one of memory ($16@ . .. $1FF) holds the 6502 stack. The
stack is used as a temporary data area by the 6502 and several
instructions can be used to implicitly read data from it or store
data to it. These instructions are executed very quickly because
they automatically calculate where to store the data or where to
read it from by examining a special internal 6502 ““stack pointer”
register. This register always points to the next free position avail-
able in the stack. When a byte is stored on the stack, it is stored
at the position within page one given by the stack pointer and then
the stack pointer is decremented by one. When a byte is removed
from the stack, it is taken from the position within page one given
by the stack pointer plus one and then the stack pointer is incre-
mented by one.

We will be discussing the stack pointer, and other registers, in
greater detail below.

2 The 6502 Microprocessor 1 19
6502 INSTRUCTION SET

There are 56 general types of instructions that the 6502 is capable
of executing; they are listed in Table 2-1. (An enhanced version of
the 6502, called the 65C@2, supports all of these instructions and
a few more—the 65C@2 is used in the Apple //c.) Each instruction
is actually a binary number that can be interpreted by the 65@2
but is usually represented by a three-character mnemonic name
that is easier to remember. These mnemonics are used whenever
an assembly-language program is being developed. The assembler
that is used takes care of translating them into the corresponding

binary numbers (the “machine language”) that the 6502 can exe-
cute directly.

Table 2-1. 6502 instruction set mnemonics in alphabetical

order.

ADC Add to accumulator DEX Decrement X register by
AND “And” with accumulator one

ASL Arithmetic bit-shift left DEY Decrement Y register by
BCC Branch on carry clear one

BCS Branch on carry set EOR “Exclusive-or”’ with
BEQ Branch on result zero accumulator

BIT Test bits

INC Increment memory b
BMI Branch on result minus ne y by

one

BNE Branch on result not INX Increment X register by
zero one

BPL Branch on result plus INY Increment Y register by

BRK Software interrupt one

BVC Branch on overflow]
clear JMP Jump to new location

BVS Branch on overflow set JSR Jump + save return

address

CLC Clear carry flag
CLD Clear decimal mode flag LDA Load accumulator
CLI Clear interrupt disable LDX Load X register

flag LDY Load Y register
CLV Clear overflow flag LSR Logical bit-shift right
CMP Compare with NOP No operation
accumulator

CPX Compare with X register ORA "“Or” with accumulator

CPY Compare with Y register PHA Push akccumulator on
stac

DEC Decrement memory by PHP Push status on stack

one

(continued)

20 [Inside the Apple //e

Table 2-1. 6502 instruction set mnemonics in alphabetical
order (continued).

PLA Pull accumulator from STA Store accumulator
stack STX Store X register

PLP Pull status from stack STY Store Y register

ROL Rotate left through TAX Transfer accumulator to
carry X

ROR Rotate right through TAY Transfer accumulator to
carry Y

RTI Return from interrupt TSX Transfer stack pointer to

RTS Return from subroutine X

SBC Subtract from TXA Tr:cr:lcsliirruﬁatt?)r

SEC Sez;c;:;rr;lyug;gr TXS Tran;.fer X to stack

SED Set decimal mode flag pointer

SEI Set interrupt disable TYA Transfer Y to

accumulator

flag

The 6502 instructions can be used to perform a wide variety of
functions. For example, they can be used to pass data between two
registers or between registers and memory, to perform simple
arithmetic, to increment and decrement index registers and mem-
ory locations, to pass data between registers and the stack, to per-
form logical functions, and so on. Figure 2-1 illustrates, in a general
way, how each of the 6502’s instructions affect memory and the
6502 registers.

As you might expect, it takes a finite period of time for any
particular instruction to be executed by the 6502. The time re-
quired to execute one instruction, however, is not necessarily the
same as the time required to execute another. In fact, the time it
takes to execute one general type of instruction will even vary
depending on how the instruction is told to access the data on
which it is to operate (i.e., its “addressing mode”).

Table 2-2 sets out the times required to execute each instruction
in units of 6502 machine cycles for each valid addressing mode
(addressing modes will be discussed in detail later in this chapter).
The length of a 6502 machine cycle is fixed by the frequency of the
clock signal fed into the 6562 microprocessor. On the /e, this clock
signal is 1.023 megahertz, which means that every machine cycle
takes 0.9775 (1/1.823) microsecond to perform.

It is often convenient to know exactly how long it will take to
execute a particular instruction when precise timing loops must

2 The 6502 Microprocessor [_]1 21

6502 SYSTEM MEMORY

INC DEC
ASL LSR ROL ROR
i | 1 lcmeabpcssc :
LDX STX CPX LDA STA |AND.ORAEORBIT LDY STY CPY
' | I B | { {
X-REGISTER|-TxA+{ ACCUMULATOR ~TYA—{Y-REGISTER
ASL LSR ROL ROR
LDXx [“TAXT pa cwmp apc sec [TAY™ LDvY
INX DEX CPX AND ORA EOR BIT INY DEY CPY
TXS Tgx PHA PLA
{ | y
e JSR
STACK POINTER 6502 STACK | rrsel PROGRAM
PHA PLA PHP PLP ($100...$1FF) < BRKA COUNTER
JSR RTS BRK RTI RTls
PI;P PII-CP RTI B?K NOP
BEQ BNE
STATUS BPL BMI
BCC BCS
CLC SEC CLD SED CLV BVC BVS
CLI SEI JMP

NOTE: Solid arrows indicate a transfer of data.
Dashed arrows indicate a transfer of information.

- Figure 2-1. Usage chart of 65682 instructions.
be generated in software. We will see an example of this in Chapter

9, where a program is presented that can generate musical notes
of specific frequencies.

6502 REGISTERS

While the 6502 is executing a program, it makes use of the six
internal registers that are shown in Figure 2-2. These registers are
used to manipulate data in the manner dictated by the program

22 [Inside the Apple //e

that is executing and also to make the 6502 aware of various aspects
of the status of the system: where the next instruction to be exe-
cuted is located, where the next free space in the stack is located,
and what the status of its seven internal flags is. A detailed under-
standing of these registers is important before a 6582 assembly-
language program can be written. We will now take a closer look
at each of the six registers.

Table 2-2. 6502 instruction set and cycle times.

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
ADC #num 69 2 2
zpage 65 2 3
zpage,X 75 2 4
(zpage,X) 61 2 6
(zpage),Y 71 2 5*
abs 6D 3 4
abs,X 7D 3 4*
abs,Y 79 3 4*
AND #num 29 2 2
zpage 25 2 3
zpage,X 35 2 4
(zpage,X) 21 2 6
(zpage),Y 31 2 5%
abs 2D 3 4
abs,X 3D 3 4*
abs,Y 39 3 4*
ASL [accumulator] 0A 1 2
zpage @36 2 5
zpage,X 16 2 6
abs OE 3 6
abs,X 1E 3 7
BCC disp 90 2 2%*
BCS disp B¢ 2 2%
BEQ disp Fo 2 2%%
BIT zpage 24 2 3
abs 2C 3 4
BMI disp 30 2 2%*
BNE disp D@ 2 2%*
BPL disp 10 2 2%*

2 The 6502 Microprocessor 1 23

Table 2-2. 6502 instruction set and cycle times
(continued).

Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
BRK [implied] 090 1 7
BVC disp 50 2 2%
BVS disp 79 2 2%*
CLC [implied] 18 1 2
CLD [implied] D8 1 2
CLI [implied] 58 1 2
CLV [implied] B8 1 2
CMP #num C9 2 2
zpage C5 2 3
zpage,X D5 2 4
(zpage,X) C1 2 6
(zpage),Y D1 2 5%
abs CD 3 4
abs, X DD 3 4*
abs,Y D9 3 4*
CPX #num E@ 2 2
zpage E4 2 3
abs EC 3 4
CPY #num Co 2 2
zpage C4 2 3
abs CC 3 4
DEC zpage Cé 2 5
zpage, X Dé6 2 6
abs CE 3 6
abs, X DE 3 7
DEX [implied] CA 1 2
DEY [implied] 88 1 2
EOR #num 49 2 2
zpage 45 2 3
zpage, X 55 2 4
(zpage,X) 41 2 6
(zpage),Y 51 2 5%
abs 4D 3 4
abs, X 5D 3 *
abs,Y 59 3 4*

(continued)

24 [Inside the Apple //e

Table 2-2. 6502 instruction set and cycle times

(continued).
Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
INC zpage E6 2 5
zpage,X 2 6
abs EE 3 6
abs, X FE 3 7
INX [implied] E8 1 2
INY [implied] C8 1 2
JMP abs 4C 3 3
(abs) 6C 3 5
JSR abs 20 3 6
LDA #num A9 2 2
zpage A5 2 3
zpage,X B5 2 4
(zpage,X) Al 2 6
(zpage),Y Bl 2 5%
abs AD 3 4
abs, X BD 3 4*
abs,Y B9 3 4*
LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs)Y BE 3 4*
LDY #num A9 2 2
zpage A4 2 3
zpage,X B4 2 4
abs AC 3 4
abs,X BC 3 4*
LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage,X 56 2 6
abs 4E 3 6
abs, X S5E 3 7
NOP [implied] EA 1 2
ORA #num 29 2 2
zpage a5 2 3
zpage,X 15 2 4
(zpage,X) g1 2 6
(zpage),Y 11 2 5%
abs gD 3 4

2 The 6502 Microprocessor] 25

Table 2-2. 6502 instruction set and cycle times

(continued).
Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
abs, X 1D 3 4=
abs,Y 19 3 4%
PHA [implied] 48 1 3
PHP [implied] 08 1 3
PLA [implied] 68 1 4
PLP [implied] 28 1 4
ROL [accumulator] 2A 1 2
zpage 26 2 5
zpage, X 36 2 6
abs 2E 3 6
abs,X 3E 3 7
ROR [accumulator] 6A 1 2
zpage 66 2 5
zpage,X 76 2 6
abs 6E 3 6
abs,X 7E 3 7
RTI [implied] 49 1 6
RTS [implied] 60 1 6
SBC #num E9 2 2
zpage ES 2 3
zpage, X F5 2 4
(zpage,X) El 2 6
(zpage),Y F1 2 5*
abs ED 3 4
abs, X FD 3 4*
abs,Y F9 3 4*
SEC [implied] 38 1 2
SED [implied] F8 1 2
SEI [implied] 78 1 2
STA zpage 85 2 3
zpage,X 95 2 4
(zpage,X) 81 2 6
(zpage),Y 91 2 5*
abs 8D 3 4
abs, X 9D 3 4*
abs,Y 99 3 4*

(continued)

26 [Inside the Apple //e

Table 2-2. 6502 instruction set and cycle times

(continued).
Assembler
Instruction Operand Opcode Number Number of
Mnemonic Format Byte of Bytes Clock Cycles
STX zpage 86 2 3
zpage,Y 96 2 4
abs 8E 3 4
STY zpage 84 2 3
zpage,X 94 2 4
abs 8C 3 4
TAX [implied] AA 1 2
TAY [implied] A8 1 2
TSX [implied] BA 1 2
TXA [implied] 8A 1 2
TXS [implied] 9A 1 2
TYA [implied] 98 1 2

*Add one clock cycle if a page boundary is crossed.

**Add one clock cycle if a branch occurs to a location in the same page;
add two clock cycles if a branch occurs to a location in a different page.

See Table 2-3 for a description of the assembler operand formats.

The Accumulator—A

The 6502 supports two simple arithmetic instructions: ADC (add
with carry) and SBC (subtract with carry). Both of them require
that the first of the two operands in the addition or subtraction be
contained in the accumulator register, A. After the arithmetic has
been performed, the result is stored in A, and this is how it gets
its name—it “accumulates” the results of arithmetic operations
that are performed. The accumulator is an 8-bit register and so
can hold numbers from @ to 255 only.

The accumulator is unique in that it is the only one of the 6502’s
registers that can be used to perform the logical instructions, namely,
EOR (logical “exclusive-or”’), ORA (logical “or”), and AND (logical
“and”), or any of the bit-shifting instructions, namely, ASL (arith-
metic shift left), LSR (logical shift right), ROL (rotate left), and
ROR (rotate right). (You should note, however, that the bit-shifting
instructions can also operate directly on memory locations.)

2 The 6502 Microprocessor] 27

15

[/

PCH

PCL

[

OOEEn

1Jz]c]

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER

STACK POINTER

PROCESSOR STATUS
REGISTER, “P”

CARRY

ZERO

INTERRUPT DISABLE
DECIMAL MODE

BREAK COMMAND

UNUSED

OVERFLOW

NEGATIVE

Figure 2-2. The 6502 registers.

Here are the 6502 instructions that directly use and affect the
accumulator:

e Arithmetic : ADC, SBC

Logical : AND, ORA, EOR
Bit-shifting : ASL, LSR, ROL, ROR

Compare : CMP

Store in memory : STA

Load from memory or with data : LDA

Store on stack : PHA
Load from stack : PLA

Inter-register transfer : TAX, TAY, TXA, TYA

The Index Registers—X and Y

Like the accumulator, the X and Y index registers are eight bits
in size and can contain numbers from @ to 255.

28 [_1 Inside the Apple //e

The index registers are often used as counters because the 6502
contains special one-byte instructions that allow the index regis-
ters to be easily incremented or decremented. No such instructions
are available to increment and decrement the accumulator.

As their names suggest, however, the index registers are used
primarily to locate elements contained in data structures in mem-
ory, such as a series of elements in a one-dimensional array. This
is done by fixing the beginning address of the data structure and
then simply adjusting the index register so that the sum of the
beginning address and the index register is equal to the address
of the element that is to be accessed.

The 6502 supports several special instructions that directly use
and affect the index registers:

* Increment : INX, INY

* Decrement : DEX, DEY

« Inter-register transfer : TAX, TAY, TXA, TYA, TXS, TSX
* Store in memory : STX, STY

» Load from memory or with data : LDX, LDY

* Compare : CPX, CPY

Note that the logical instructions and bit-shifting instructions
that can be used with the accumulator cannot be used with the
index registers.

The Processor Status Register—P

The 8-bit processor status register holds the states of seven one-
bit flags or “status” bits that are referenced by the 6502 when it
is executing many of its instructions. (One bit in the processor
status register, bit 5, is not used by the 65@2.) Each of these flags
has a specific meaning and can markedly affect how instructions
are executed. For example, the 6502 supports a series of “‘branch
on condition” instructions (BCC, BCS, BPL, BMI, BEQ, BNE, BVC,
BVS), each of which can be used to examine the status of a par-
ticular flag and to cause the program to “jump”’ to a new location
if the condition is met or to continue on with the next instruction
in memory if it is not.

Although almost all instructions will cause flags in the processor
status register to be adjusted after they have been executed, the
following instructions explicitly affect them:

¢ Clear and set the carry flag : CLC, SEC
* Clear and set the decimal flag : CLD, SED

2 The 6582 Microprocessor 1 29

* Clear and set the interrupt flag : CLI, SEI
* Clear the overflow flag : CLV

Let’s take a look at each of these seven flags right now.

Carry Flag (C)

The 6502 uses the carry flag in three quite different ways. First,
the carry flag represents the ‘“ninth” bit in any unsigned addition
(ADC) or subtraction (SBC) operation that is performed. (“Un-
signed”’ means that all eight bits of a byte are used to represent
the magnitude of a number.) It can be examined after the addition
or subtraction in order to determine whether the result is outside
the range of numbers that can be stored in the 8-bit accumulator.
This allows for easy manipulation of numbers that use more than
one byte.

The 6502 can perform arithmetic in one of two modes: binary
and decimal. The mode used depends on the setting of the status
register’s decimal mode flag (see below).

In binary mode, each byte is considered to represent a simple
unsigned binary number from @ . .. 255. When arithmetic opera-
tions are performed, the standard rules for adding or subtracting
two binary numbers are followed.

In decimal mode, however, each half of the byte is considered
to represent a single decimal digit from @ to 9; this means that
only those decimal numbers from @ ... 99 can be represented.
When arithmetic operations are performed on such numbers, the
result is always stored in the same decimal format.

In either mode, before any arithmetic is performed, the carry
flag must be cleared with a CLC instruction, in the case of addition,
or set with a SEC instruction, in the case of subtraction. (If mul-
tibyte arithmetic is being performed, then the carry is adjusted
only at the beginning of the sequence of additions or subtractions.)
If the state of the carry flag changes after an addition operation,
then the true answer is 256 (if in binary mode) or 100 (if in decimal
mode) more than the number in the accumulator. If the carry flag
changes after a subtraction, then the true answer is 256 (if in binary

mode) or 168 (if in decimal mode) less than the number in the
accumulator.

The second use of the carry flag is as a ninth bit that participates
whenever the ASL, LSR, ROL, and ROR bit-shifting instructions
are executed.

Third, the carry flag is used as a general-purpose flag that is

30 [_1 Inside the Apple //e

acted on by the BCC (branch if C-flag is #) and BCS (branch if C-
flag is 1) instructions. As with all of the 6502’s “branch on con-
dition” instructions, BCC and BCS allow control of the program
flow to be manipulated by simply changing the state of a flag in
the processor status register (in this case, the carry flag).

Zero Flag (Z)

This flag is used to indicate whether the last data movement or
arithmetic operation involved a zero result. If it did, then the Z-
flag will be set (1); otherwise it will be cleared (9).

There are two branch instructions that examine the status of the
Z-flag to determine whether the branch should be performed: BEQ
(branch if Z-flag is 1) and BNE (branch if Z-flag is 0).

Interrupt Disable Flag (1)

This flag is used to control how the 6502 will react when the
electrical signal on its IRQ (interrupt request) pin is brought near
@ volts. Such an interrupt can be generated by certain peripheral
cards whenever they are ready to send information to, or receive
information from, the //e. If the I-flag is set using the SEI instruc-
tion, then all IRQ signals that may be generated will be ignored.
If, however, the I-flag is cleared using the CLI instruction, then the
6502 will respond to IRQ signals when they occur by beginning a
special interrupt sequence that is described in detail below in the
section entitled “6502 INTERRUPTS.”

Decimal Mode Flag (D)

This flag is used to control how the 6502 is to perform addition
and subtraction operations. If standard binary arithmetic is to be
performed using the ADC and SBC instructions, then this flag must
be cleared to @ using the CLD instruction. As we saw when dis-
cussing the accumulator, in binary mode bytes are treated as un-
signed binary numbers from @ to 255.

If, however, the D-flag is set to 1 using the SED instruction, all
arithmetic will be performed under the assumption that all num-
bers are stored in a special decimal format. In this format, one
byte is used to store exactly two decimal digits from @ to 9. The
first digit is stored in the high-order four bits and the other in the
low-order four bits and the maximum number that can be stored

2 The 6502 Microprocessor 1 31

is 99. When arithmetic operations are performed, the results will
also be stored in this format.

Break Flag (B)

This flag is adjusted internally by the 6502 whenever an IRQ
(interrupt request) interrupt is recognized by the 6502 or a BRK
(break) instruction is executed. See the section below entitled 6502
INTERRUPTS” for more information on these types of interrupts.
When an IRQ interrupt is recognized, then the B-flag is cleared to
@; if a BRK instruction is executed, then it is set to 1.

Whenever an IRQ or a BRK interrupt is generated, the 6502
begins to execute the same program (its address is held at locations
$FFFE and $FFFF). It is often convenient, however, to determine
what the source of the interrupt was so that a different action can
be taken for each source. This is most easily done by having the
interrupt-servicing program examine the state of the B-flag.

Overflow Flag (V)

The overflow flag is used primarily when performing arithmetic
operations on signed numbers. Signed numbers are those that use
bit 7 of a byte to hold the sign of the number (1 for negative, @ for
positive). Bits @ . . . 6 are used to store the magnitude of the number
in a special “two’s complement” format that will be described in
Chapter 4. If the result of an addition or subtraction of two signed
numbers is outside the range of numbers that can be stored in this
format (—128 ... +127), then the V-flag will be set to 1; if the
number is in range, however, the V-flag will be cleared to @.

The V-flag can be explicitly cleared by using the CLV instruction.
Surprisingly, there is no corresponding instruction to explicitly set
the V-flag.

The state of the V-flag can also be affected by using the BIT
instruction. If you “BIT” any memory location, then a copy of bit
6 of the byte stored there will be placed in the V-flag.

Two branch instructions make use of the V-flag: BVS (branch if
V-flag is 1) and BVC (branch if V-flag is 9).

Negative Flag (N)

The negative flag is used to indicate the sign of the last value
that was directly transferred into the A, X, or Y register or that

32 [Inside the Apple //e

was put there by an instruction that performed an arithmetic op-
eration (DEX, DEY, INX, INY, ADC, SBC, and so on). The 6502
considers any byte that contains a one in bit 7 to be negative.

Two branch instructions make use of the N-flag: BPL (branch
on plus, i.e., N-flag is #) and BMI (branch on negative, i.e., N-flag
is 1).

A BIT instruction can also be used to directly affect the state of
the N-flag. When you “BIT” any memory address, a copy of bit 7
of the byte stored there will be placed in the N-flag. If bit 7 is used
to hold the status of some condition, then you can use BPL to
branch if the status is off (@) or BMI to branch if it is on (1). We
will see in later chapters that the //e uses bit 7 of several locations
to represent the status of different hardware switches that can be
controlled by software.

The Stack Pointer—S

As we saw earlier in this chapter, the 6582 uses the 256-byte area
from $100 to $1FF as a hardware stack. This is a ‘“last-in, first-
out” data area: the most recent information stored on the stack is
always removed first. Information is usually placed on the stack
by the “push” instructions, PHA and PHP, and removed from the
stack by the “pull” instructions, PLA and PLP. (Information does
not actually disappear after a pull, but it will be overwritten as
soon as more information is pushed on to the stack.)

The JSR (jumip-to-subroutine) instruction also causes informa-
tion to be placed on the stack. When the JSR instruction is exe-
cuted, the address of the next instruction in memory after the JSR,
minus one, is pushed on the stack (high-order byte first). When the
corresponding RTS (return-from-subroutine) instruction is exe-
cuted, this address is removed and the program resumes at that
address (plus 1).

The stack pointer register, S, is used to keep track of where in
the 256-byte stack area the bytes are to be pushed to or pulled
from; it always points to the next free space available in the stack
area. When the system is first initialized, S is set equal to $FF.
Then, whenever a byte is pushed on the stack, it is stored at location
$100 + S and then the stack pointer is decremented by one. Because
S is decremented, the stack grows downward in memory. When
bytes are pulled from the stack, they are taken from the top of the
stack (location $100+S+1). The stack pointer is automatically
incremented each time a byte is removed from the stack in this
way.

2 The 6502 Microprocessor [33

Interrupt conditions and interrupt-related instructions also af-
fect the stack pointer (see the section below entitled “6502 IN-
TERRUPTS” for a detailed discussion of interrupts). When an in-
terrupt from a peripheral device is recognized (or one is generated
by a BRK (break) instruction), a two-byte address and a copy of
the processor status register is placed on the stack and the stack
pointer is decremented by three. When the corresponding RTI (re-
turn-from-interrupt) instruction is executed, the stack pointer will
be incremented by three, thus effectively ‘“removing” these bytes
from the stack.

Here are the 6502 instructions that directly affect the stack pointer
register:

¢ Inter-register transfer : TXS, TSX
» Push data on stack : JSR, PHA, PHP, BRK
» Pull data from stack : PLA, PLP, RTS, RTI

The Program Counter—PC

The program counter (sometimes called the instruction pointer)
is the only 16-bit register that the 6502 supports and is used to
hold the address of the next instruction to be executed. This address
will normally be that of the next instruction in the program, but
not necessarily. There are several instructions that can be used to
manipulate the flow of the program and to pass control to other
parts of the program by adjusting the program counter accord-
ingly. These are the JMP (jump) instruction, which acts like an
Applesoft GOTO, the JSR (jump-to-subroutine) and RTS (return-
from-subroutine) instructions, which act like an Applesoft GOSUB/
RETURN combination, and the branch-on-condition instructions
(BCC, BCS, BEQ, BNE, BPL, BMI, BVC, BVS). The program counter
is also affected by any hardware or software interrupt (BRK) and
by the RTI (return-from-interrupt) instruction.

6502 ADDRESSING MODES

A complete 6502 instruction is either one, two, or three bytes
long. The first byte always represents the operation code (“‘op-
code”) for the instruction itself and the remaining bytes (if any)
represent the operand; if an operand is specified, it is either an
address (one byte or two bytes) or immediate data (one byte). If
the operand represents a two-byte address, then the first byte is

34 [Inside the Apple //e

always the lower two digits of the four-digit hexadecimal address
(the allowable addresses are in the range $0000 to $FFFF).

An address that is specified after an opcode is not necessarily
the address from which the instruction will read data or to which
it will store data. In many instances, the 6502 uses this address to
calculate another address (called the “effective address’’) on which
it does operate. Exactly how this calculation is to be performed
depends on which of several addressing modes that can be used by
that instruction has been selected. The 6502 determines which
addressing mode has been selected by examining the value of the
opcode itself—each general type of instruction can have several
opcode values associated with it, one for each valid addressing
mode. The value of the opcode also dictates whether the operand
is to be interpreted as immediate data instead of an address.

We will now outline the various addressing modes that the 6502
supports. Before beginning, you should note that not all instruc-
tions are permitted to use each addressing mode. The ones that
are supported by each instruction are indicated by entries in Table
2-2. The names of each of the addressing modes that the 6502 uses,
and the operand formats used to represent these modes in an as-
sembly-language program, are summarized in Table 2-3 Note that
these operand formats are those used by the BIG MAC assembler
that was used to develop the examples presented in this book; other
assemblers may require that slightly different formats be used.

Immediate

Immediate addressing is used whenever you want an instruction
to act on a specific 8-bit number rather than on a byte stored
somewhere in memory. This 8-bit number is stored in the byte
immediately following the opcode itself and forms the operand for
the instruction.

The immediate addressing mode is most useful for initializing
a register to a constant value and for providing specific data on
which an instruction is to operate. To select this addressing mode
when using an assembler, the “#”’ symbol must be placed in front
of the number in the instruction’s operand:

LDA #49—load the accumulator with 49 (decimal)
LDX #$43—load X with $43 (hexadecimal)

It is often necessary to deal with the high-order or low-order byte
of a two-byte address as an immediate quantity. To do this, you
must use an assembler operand of the form “#<ADDRESS” (for

2 The B50@2 Microprocessor 1 35

Table 2-3. 6502 addressing modes and assembler operand

formats.
Assembler Operand Example of
Addressing Mode Format Instruction
Immediate #num LDA #$45
#<abs LDA #<$FD1B
#>abs LDA #>3$FD1B
Absolute abs LDX $FE44
zpage LDA $24
Accumulator [Not applicable] ASL
Implied [Not applicable] CLC
Indexed indirect (zpage, X) LDA ($E9, X)
Indirect indexed (zpage), Y STA ($28), Y
Absolute indexed abs, X LDA $20090, X
abs, Y STA $0400, Y
zpage, X LDA $28, X
zpage, Y STX $22,Y
Relative™ disp BNE $BEAF
Indirect (abs) JMP ($93EE)
Note: “num” = 1-byte number
“abs” = 2-byte address
“<abs” = low-order byte of a 2-byte address (or constant)
“>abs” = high-order byte of a 2-byte address (or constant)
‘“zpage’’ = 1-byte zero page address
“disp”’ = 1-byte signed displacement

*Relative addressing: An absolute address is usually specified in the
operand when the program is written; the assembler converts the operand
to a one-byte displacement to this address when the program is assembled.

the low-order byte) and “#>ADDRESS" (for the high-order byte),
where “ADDRESS” is the address being dealt with. Note, however,
that the form of this type of operand applies to the BIG MAC
assembler only; most other assemblers require that a different
method be used to specify which half of an address is to be dealt
with. One assembler, the Apple 6502 Editor/Assembler, uses the
same general method, but it reverses the meaning: “#>" is used
to specify the low-order byte and “#<" is used to specify the high-
order byte!

Absolute

The absolute addressing mode is used whenever the operand
itself contains the absolute address in memory on which the opcode

36 [Inside the Apple //e

is to operate. The two bytes required to store this address are stored
low-byte first.

Here are some examples of how to use the absolute addressing
mode:

LDA $FE43—load the accumulator with the number stored at
$FE43
STY $1238—store the Y register at location $1238

Some instructions support an important variant of the absolute
addressing mode, called zero page absolute, if the address specified
is in the 6502 zero page (the first 256 bytes of memory). In this
mode, the opcode is followed by a one-byte address only because
the high-order byte is implicitly zero. Most assemblers will rec-
ognize when a zero page location is being specified and will au-
tomatically select this addressing mode for you by changing the
value of the opcode byte used by the instruction when the program
is assembled.

Accumulator

Accumulator addressing is the mode used by all those opcodes
that act on the accumulator alone and that require no address or
immediate data on which to operate. These are the bit-shifting
opcodes LSR, ASL, ROL, and ROR. There are no operand bytes
for these instructions. Note, however, that some assemblers other
than BIG MAC (notably, the Apple 6502 Editor/Assembler) require
that the letter “A” be entered in the operand field before the pro-
gram source code can be properly assembled.

Implied

The 6502 supports many opcodes that do not act on immediate
data or on memory locations, but rather on internal registers and
status flags only. These opcodes require no operands because their
actions are implicitly defined by the opcode itself and so the ad-
dressing mode used is called implied.

Here are some examples of opcodes that use the implied ad-
dressing mode: PHA, PLA, PHP, PLP, CLD, CLI, BRK, DEX, INX,
NOP, RTS, TAX.

Indexed Indirect

When the indexed indirect addressing mode is used, the operand
is only one byte long and represents a location in zero page. The

2 The 6502 Microprocessor 1 37

effective address on which the instruction acts is calculated by first
adding the contents of the X register to the zero page location
specified in the operand to obtain a resultant address. The effective
address is represented by the two bytes that are stored at the
resultant address and the very next address (low-order byte first).

You can select this addressing mode when using an assembler
by using an instruction of the form

STA ($E0,X)

where the parentheses indicate that the effective address is not
$E@ + X but rather the address stored at that location.

Indirect Indexed

Indirect indexed is a powerful addressing mode that is often used
to access a block of memory that may not always begin at the same
location in memory or that is longer than 256 bytes in length. The
operand is one byte long and represents a zero page location; this
zero page location, and the one immediately following it, contain
the address (low-byte first) of the beginning of a data block in
memory. These locations are said to ‘“point to” this data block.

When this addressing mode is used, the effective address on which
the instruction is to operate is calculated by first taking the address
of this data block from the zero page locations and then adding to
it the contents of the Y register.

Here is an example of how you would select the indirect indexed
addressing mode when using an assembler:

LDA ($26),Y

The parentheses around $26 mean ‘““contents of”’; it is the address
stored at $26 (and $27) that will be used to calculate the effective
address, and not $26 itself. If the Y-register contains $FE and the
address $400 is stored at $26/$27, then the accumulator will be
loaded with the contents of memory location $4FE ($4FE = $400
+ $FE).

Absolute Indexed

The operand for the absolute indexed addressing mode is two
bytes long and contains the absolute address of a memory location
called a “base address.” The effective address on which the in-
struction is to operate is calculated by taking this base address
and adding to it the contents of the X register (if X indexing is
selected) or of the Y register (if Y indexing is selected).

38 [_1 Inside the Apple //e

Here are some examples of the use of this addressing mode:

LDA $400, X—Iload the accumulator with the contents of the
location specified by $400 + X.
STA $A032,Y—store the accumulator at the location specified by
$A032+Y

There is a special version of this addressing mode, called zero
page absolute indexed, that can be used by some instructions when
the base address is in page zero. In this case, the operand is only
one byte long and represents this zero page address. Most assem-
blers will automatically select this addressing mode for you if the
operand is, indeed, in page zero.

Relative

The 6502 supports a series of branch instructions that examine
the 6502 status register to determine whether a change in the flow
of the program should be made or not: BEQ, BNE, BPL, BMI, BCC,
BCS, BVC, and BVS. The first byte represents, as usual, the opcode
for the instruction. The second byte represents the number that
must be added to the address of the next instruction in memory
in order to calculate the destination address of the branch. Because
this byte represents a displacement from an instruction’s location
rather than an absolute location, this addressing mode is called
“relative.”

There are restrictions on how far you can branch using relative
addressing. In particular, you can only specify a relative address
that is at most 127 bytes higher in memory or 128 bytes lower in
memory (as measured from the address of the next higher instruc-
tion). Values from $0@ ... $7F represent the positive branches (@

. 127), and values from $80 . . . $FF represent the negative branches
(—128, —127, ...,—1). Note that the values for negative branches
are stored in a special “two’s complement” format; see Chapter 4
for a detailed description of this format.

If you must transfer control to a destination location that is
outside this range, you will have to use a JMP instruction instead.

Indirect

This addressing mode is used by only one instruction, JMP. A

~_-two-byte operand is used and these two bytes define a location in

memory that contains the low half of the address that is to be
jumped to; the high half is stored in the next memory location.

2 The 6502 Microprocessor 1 39

If you are using an assembler, then you would select this ad-
dressing mode by entering an instruction that looks like this:

JMP ($1234)

The parentheses around the operand indicate that it is not $1234
that is being jumped to but rather the address stored at $1234 (and
$1235).

The indirect addressing mode is useful in situations where the
ultimate destination of the jump instruction may be changed, per-
haps by another program. Even if this other program places a new
address at the operand address, the main program itself need not
be changed. On the other hand, if the absolute addressing mode
were used instead, then it would be necessary to modify the pro-
gram and this may be difficult to do. The //e uses the indirect
addressing mode whenever it has to jump to its character input
or output subroutines. Whenever new input or output devices are
activated, all that need be done is to change the address stored at
the address specified in the operand—the main program will re-
main the same (see the discussion of the /e’s input and output links
in Chapters 6 and 7).

You should note that there is a serious hardware bug in the 6502
chip itself that affects the use of the indirect addressing mode. It
turns out that if the address specified in the operand begins at the
end of a page (that is, at $xxFF), then the effective address will not
be the one found at $xxFF and $xxFF+ 1 as expected but rather at
$xxFF and $xx@0. This bug has been eliminated in the 65C82 micro-
processor that controls the Apple //c.

6502 INPUT/OUTPUT HANDLING

Unlike those of some microprocessors, the 6502 instruction set
does not include any instructions that are specifically designed to
perform input/output (I/O) operations. Instead, all I/O operations
are performed by using standard instructions to read data from or
write data to addresses within the 6502’s standard 64K address
space to which I/O devices are “connected.” These addresses do
not usually represent real RAM or ROM memory locations (mem-
ory that holds video display information is one exception) but,
nevertheless, are accessed in exactly the same way as if they did.

This method of handling I/O is called “memory-mapped I/O”
because the I/0 devices form a logical part of the 6502’s 64K mem-
ory space itself and so no special instructions are required to make
use of them. The //e contains several addresses that are used to

40 [1 Inside the Apple //e

control various aspects of its hardware environment. As we will
see at the end of this chapter, except for those addresses that relate
to the video display, these addresses are all contained in locations
$CO00 ... $COFF. Note that some of these I/0O locations can be
accessed in order to switch between one of two hardware states,
for example, text or graphics display, primary or alternate char-
acter set, and 4@-column or 8d-column display. Thus, they are called
“soft switch”” I/O memory locations.

6502 INTERRUPTS

There are three input pins on the 6502 integrated circuit that
are called RESET, IRQ (interrupt request), and NMI (non-mask-
able interrupt). When the electrical signals at each of these three
pins is high (near +5 volts) the 6502 goes about performing its
normal functions. If, however, one of these pins is suddenly brought
low (near @ volts), one of three special interrupt sequences may
begin, depending on which pin has been affected. An interrupt
sequence can also be generated in software by using the BRK in-
struction.

One especially useful type of hardware interrupt, IRQ, is com-
monly generated by devices found on peripheral cards that are
plugged into one of the //e’s seven expansion slots (see Chapter 11).
These interrupts indicate to the 6502 microprocessor that an event
has taken place that should be dealt with before continuing to run
the main program. For example, a clock card may generate an
interrupt once per second to allow the new time to be displayed
on the video screen.

Each type of 6502 interrupt has associated with it a two-byte
vector that holds the address of the interrupt-handling subroutine
that will be called when the interrupt occurs. These vectors are all
stored in the high end of of the 6502 memory space from $FFFA
to $FFFF. The specific vector locations for each type of interrupt
and the addresses of the interrupt-handling routines to which they
point are shown in Table 2-4. Note that all of the vector addresses
(except the one for NMI) change when ProDOS is being used. Most
of ProDOS resides in a special “bank-switched RAM" area that
occupies the addresses from $D@09 ... $FFFF that are normally
occupied by the Applesoft and the system monitor ROMs (see Chap-
ter 8). Thus, the interrupt vectors within this RAM area (from
$FFFA to $FFFF) can be changed as desired and they will take
effect whenever bank-switched RAM is active. ProDOS takes ad-
vantage of the power to change the interrupt vectors by storing in

2 The 6502 Microprocessor [_1 41

Table 2-4. 6502-Apple //e interrupt locations.

Interrupt Interrupt Vector Address of Location of
Type Location Interrupt Handler User Vector
NMI $FFFA/$FFFB $03FB n/a
RESET $FFFC/$FFFD §FA62 or $FFCB $03F2*
IRQ $FFFE/$FFFF $FA40 or $FF9B $03FE
BRK $FFFE/$FFFF $FA40 or $FF9B $03F0

when the ProDOS
bank-switched
RAM area is
active only

*Control is passed to the Reset user vector only if the number stored at
$3F4 (the powered-up byte) is equal to the logical exclusive-OR of the
number stored at $3F3 and the constant $AS.

them the addresses of routines that handle interrupts more safely
and efficiently than the normal subroutines that are pointed to by
the ROM interrupt vectors. We will see examples of this later in
this section.

The interrupt-handling routines on the //e ultimately pass control
to other addresses that are specified in user-definable vector lo-
cations. These user vector locations are also shown in Table 2-4.
Note that a user-defined interrupt subroutine that is used to handle
interrupts generated by an IRQ or NMI signal, or a BRK command,
must end by executing an RTI (return-from-interrupt) instruction
and that when it ends the 6502’s A, X, and Y registers must contain
the same values as when the subroutine was first called.

Interrupts are often generated by I/O devices whenever they have
information available to be read (input devices) or whenever they
are ready to receive information (output devices). Because the 6502
can be interrupted by the device, it is not necessary for the program
to continuously monitor (poll) the I/O devices to determine when
one is ready to be used. This means that the program is able to
execute much more efficiently.

The four basic types of interrupts supported by the 6502 will
now be discussed in detail.

Reset Interrupt

The reset interrupt is used to cause the system to stop executing
the current program and to begin a sequence of instructions that

42 [Inside the Apple //e

start at the address stored in the reset vector a